Improving Robustness of Feature Representations to Image Deformations using Powered Convolution in CNNs
نویسندگان
چکیده
In this work, we address the problem of improvement of robustness of feature representations learned using convolutional neural networks (CNNs) to image deformation. We argue that higher moment statistics of feature distributions could be shifted due to image deformations, and the shift leads to degrade of performance and cannot be reduced by ordinary normalization methods as observed in experimental analyses. In order to attenuate this effect, we apply additional non-linearity in CNNs by combining power functions with learnable parameters into convolution operation. In the experiments, we observe that CNNs which employ the proposed method obtain remarkable boost in both the generalization performance and the robustness under various types of deformations using large scale benchmark datasets. For instance, a model equipped with the proposed method obtains 3.3% performance boost in mAP on Pascal Voc object detection task using deformed images, compared to the reference model, while both models provide the same performance using original images. To the best of our knowledge, this is the first work that studies robustness of deep features learned using CNNs to a wide range of deformations for object recognition and detection.
منابع مشابه
Design of Kernels in Convolutional Neural Networks for Image Classification
Despite the effectiveness of Convolutional Neural Networks (CNNs) for image classification, our understanding of the relationship between shape of convolution kernels and learned representations is limited. In this work, we explore and employ the relationship between shape of kernels which define Receptive Fields (RFs) in CNNs for learning of feature representations and image classification. Fo...
متن کاملImproving Network Robustness against Adversarial Attacks with Compact Convolution
Though Convolutional Neural Networks (CNNs) have surpassed human-level performance on tasks such as object classification and face verification, they can easily be fooled by adversarial attacks. These attacks add a small perturbation to the input image that causes the network to mis-classify the sample. In this paper, we focus on neutralizing adversarial attacks by compact feature learning. In ...
متن کاملDeep Self-Convolutional Activations Descriptor for Dense Cross-Modal Correspondence
We present a novel descriptor, called deep self-convolutional activations (DeSCA), designed for establishing dense correspondences between images taken under different imaging modalities, such as different spectral ranges or lighting conditions. Motivated by descriptors based on local self-similarity (LSS), we formulate a novel descriptor by leveraging LSS in a deep architecture, leading to bet...
متن کاملImage authentication using LBP-based perceptual image hashing
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...
متن کاملLearning Convolutional Neural Networks using Hybrid Orthogonal Projection and Estimation
Convolutional neural networks (CNNs) have yielded the excellent performance in a variety of computer vision tasks, where CNNs typically adopt a similar structure consisting of convolution layers, pooling layers and fully connected layers. In this paper, we propose to apply a novel method, namely Hybrid Orthogonal Projection and Estimation (HOPE), to CNNs in order to introduce orthogonality into...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.07830 شماره
صفحات -
تاریخ انتشار 2017